
International Journal o f  Theoretical Physics, Vol. 27, No. 1, 1988 

Spinor Fields with Zero Mass in Unbounded 
Isotropic Media 

P. H i l l i o n  ~ 

Received August  28, 1987 

The Dirac equation for massless fields in unbounded media has solutions similar 
to the focus wave mode solutions of Maxwell's equations leading to infinite 
dynamical invariants. We define the splash wave mode solutions as a weighted 
superposition of the focus wave modes, and discuss the conditions to be fulfilled 
by the weight functions to make the dynamical invariants bounded. We leave 
open the physical interpretation of these solutions. 

1. I N T R O D U C T I O N  

W e  s h o w  tha t  the  D i r a c  e q u a t i o n  fo r  mass le s s  f ields is u n b o u n d e d  

i s o t r o p i c  m e d i a  has  f o c u s  w a v e  a n d  sp l a sh  w a v e  so lu t ions .  

U s i n g  the  c y l i n d r i c a l  c o o r d i n a t e s  (r, ~, z) a n d  the  na tu ra l  sy s t em o f  

uni t s  ( h  = c = 1), we  h a v e  the  D i r a c  e q u a t i o n  in the  f o r m  

w h e r e  Or, 0~,  0=, a n d  O, are  t he  de r iva t i ve s  wi th  r e spec t  to space  a n d  t i m e  

a n d  the  m a t r i c e s  F are  

rr=l~ orl r l~ ~ 
- - 0 "  r - - 0 " ~  - - 0 "  z 

with  ( i  = x/L-] ) 

I 1 
0 e - '~  

Or r = . 

e '~ 0 ' 
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Go is the 2 x 2 identity matrix. The matrices F and cr satisfy the commutat ion 
r e l a t i ons  of  the Dirac and Pauli algebras, respectively; one has 

O'rOr ~ = io'=, 0-~0-: = i0-r, o':G, = io',p (3) 

and 

O~p0- r : O'r 0~0-~ = --0"r (3') 

We note that 1"*, ~ = 1"*F ~ and 1"~ = cF~ * are the hermitian conjugate, 
adjoint, and charge conjugate fields, respectively. The asterisk denotes 
complex conjugation and one has 

i I - -  0"  2 0 
, 0"2 = (4) e - I F C  = F r, e = 0 0"2 

The equation for the adjoint field is 

~ t~  ___ (0r~)F" +-1 ( 0 ~ ) F  ~ + (a=@)r  z + ( a , @ ) r  o = 0 (1') 
r 

Using (2), (2') and (3), (3') we get easily the relation 

0 ( r a  ~ 1 02__2_ 02 02 

~:D=!o-- ; ,  ~, /~ +r-~O~Op o t  2 

so that every component  of  1" is a solution of  the wave equation Du = 0. 
Let us take 1" in the form 

() d) I ' =  ep= qh X =  (5) 
' (P2 ' X ~- 

Then equation (1) reduces to a system of two equations: 

( 1 ) 
O ~ # =  0-,O,+rG~O~+G~O=+O , ~ = 0 ,  c~,/3=1,2 

(6) 

From now on we only consider the solutions of  (6) corresponding to waves 
propagating along Oz. 

2. FOCUS WAVE M O D E  S O L U T I O N S  

2.1. First Kind of  Focus Wave Modes 

It is easy to check that equations (6) have the solutions (Hillion, 1987) 
i 

~1,,, = ~,,+l, Xm = ixm 
(7) 

~2,, = - i ~ ,  Xm = -Xm§ 
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with 

( ~ - (a - i~:) "+~ exp a - i~]  e x p [ - i ( k ~ +  n~)] 

(7') 
- r~-~- ( qr2 ~ e x p [ i ( q ~ + m ~ ) ]  

X,, (b+i~:) "+a exp - b + i ~ ]  

where we used the variables ~ = z - c t  and ( = z + e t  (with c = l ) .  The 
parameters (a, k, n) and (b, q, m) are arbitrary, but to obtain bounded 
solutions we assume that a, b, k, and q are some positive real scalars, while 
m and n are positive half-integers. 

Substituting (7) into (5) gives the solutions ~ , ~  of Eq. (1) correspond- 
ing to spinor waves propagating along Oz. 

Let us now consider instead of (6) the Proca equations (Hillion and 
Quinnez 1986a) 

o ~ q ~  =0 a~x~, - 0  (8) 

where q~ and Xr are traceless second-rank spinors. A look at (6) and (8) 
supplies at once the solutions: 

1 2 �9 i i 
~t) 1,n = ~t~n, ~Ol,n = - - I ~ n + l ,  S2,m = i x , , ,  X2 ,m  = - -Xrn- - I  

(8') 
1 

Using the well-known relation between self-dual tensors and traceless 
second-rank spinors, we get the relations 

i~ 2 Ar+iA~ = e r 

A ~ -  i A ~  = i e - i~r  

1 1 

A = e i / 2 E  + i l ~ l / 2 H  (9) 

where E and H are the electric and magnetic fields, e is the permittivity, 
and/z,  is the permeability. One has similar expressions with X~, leading to 
an electromagnetic field with opposite polarization. 

Substituting (8') into (9) and assuming that n is a positive integer, we 
obtain the focus wave mode solutions (Brittingham, 1985) of Maxwell's 
equations (Hillion, 1986). This justifies the name given to the solutions (7). 

R e m a r k .  Let us consider a symmetric second-rank spinor ~ instead 
of  a traceless spinor ~ ,  we easily check the following relations: 

~1~ -= ~+1(2k) = ( a - i~)~p 2,( k ) =- ( a - isc)(~) 2 

~22--- ~_~(2k) = ( a - i ~ )~  ~_~( k ) =- ( a - i~:)(~2) 2 

~12 = ~2~ -= ~ ( 2 k )  = ( a - i ~ ) ~ , (  k ) ~ , _ l (  k ) =- ( a - i~:)~1~2 
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with v = 2 n - 1 .  These kinds of relations are at the base of de Broglie's 
method of fusion in his theory of light (de Broglie, 1940). 

2.2. Relativistic Covariance 

Let us consider the Lorentz transformation: 

z - v t  t - / 3 z l c  v (10) x' = x, y' = y, z' t' = - (1--/32) '/2' (1--/32) 1/2' /3 e 

From (10) we get 

, / 1  + /3 )  1/2 
(~, k, q, a, b) ~-~ (~:', q', k', a ,  b') = \ ] - ~ 1  (~, k, q, a, b) ( l l a )  

1- /3  I/2 z- 
~:~-'~ ~:' = (1T-3)  ~ ( l lb )  

Since r and q~ are transverse coordinates, they are invariant. So if we write 
q~, in the form 

(r/ro)" [ (r/ro) 2 ] 
~'" - (1 - i~/kr2) "+' exp 1 - i~/kr~J exp( - i (k~+  nq~)] 

and similarly Xm, one sees at once, using (7), (7'), and (10) that the Lorentz 
transformation (10) leads to 

dPn~->O~=U~b~' U=l[(l+fl)/(1-/3)]l/20 011 

(12) 

10 o I Xm~+X'm= VX,,, V= [(1+/3)1(1_/3)],/2 

that is, according to (5), 

~,,~ ~ ' m  -- S'q~,m, I U 0 (13) 
S =  0 

A simple calculation gives 

S-1Fr,~S = Fr,~, 
( 1 q::/3"~ 1/2 

s- ' ( r~  = \ 1 - ~ /  (F~ ~) (14) 

According to (13) and (14), equation (1) is covariant under the Lorentz 
transformation (10). 
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2.3. Dynamical Invariants 

The Dirac equation (1) and its adjoint equation (1') can be obtained 
from the Lagrangian 

= � 8 9  _ (~t~)~] (15) 

So, assuming real all the parameters in the solutions ~.m, the components 
T O,. of the energy-momentum tensor, where the dot stands for the indices 
r, q~, z, 0, take the form 

o r  i aA' . ,~%,m) Tn:m = ~ (V :,mO,~.,,. - * 

( k |  q Ix l ) =2r~\a-T~+k2[ ] b2+q2 

i + 

1 (n[..[2 + 2 
= -  1~1,.1 -mlX~l=-Ixs 2) 

r 

(16) 
oo oz i , r 

Tn'm q- T.~,. = ~ (~ n,rna ~a~ n,m -- O~ ~I)" n,m ~I1" n,m) 

= kl* .12-  qlX,.I 2 

O0 Oz i 
- ( ~ . , , , , a e ~ P . , ~  - a ~ . , , J r  V . : . ,  V . ; , .  = - ~  * 

- a2 + ~2 (1~~ "12+ ( n + l '  kr2a a-5--~+~ 2]a2-~2~ 1""12/~ 

b2+e 2 [x~]Zr m + l  b b2+~ Ix~l~ 

with 

\ a + ( /  

_ r 2 n  [ 
I~~ = (a~+ ~5.+~ exp \ - -  

and similar expressions for Ixml = and [Xml =. 

2akr 2 "~ 
a 2 + ~  2] 

(17) 
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For the component sOn'rm ~ of the spin tensor we get 

So,r~ : 1 , r 
,.m r 

(18) 

= 1 (  1 2  a2~-~)lq~']2-21-(i b2-~5)  IX']2 

The physical quantities of interest are the volume integrals of these densities, 
that is, the energy-momentum four-vector: 

fTIo ;7 P'. m = dE r dr o,. , T.,m d~ (19) 

and the 0z component of the spin vector: 

f ? ; o  o fo S ~ , r n  : dE rdr  ,r &p (19') ~ n , m  

In Appendix A, we prove the following results: 

1. P~,,, =0,  in agreement with the fact that ~,,m represents a wave 
propagating along Oz. 

2. ~ z o z Pn m Sn, m are P . . . .  P . . . . . .  and infinite, a not surprising result, since 
we considered an unbounded medium without any source or sink. 
Similarly for the focus wave mode solutions of Maxwell's equations, 
the electromagnetic energy is infinite (Wu, and Lehmann, 1985). 

Nevertheless, for the self-conjugate fields ~.,,,, = ~ . m ,  one has, accord- 
ing to (4), IXml:=l,I,.l :, which implies m = n ,  b = a ,  q = k .  Then all the 
components are zero. Such a field ~,,m made up of a doublet of charge 
conjugate spinors carries no mass, energy, momentum, charge or spin. 

2.4. Second Kind of Focus Wave Mode 

We note u = {r, q~, ~} and let ~y  be 

~ f ( u , ~ ) = I + ~ f ( E - s ) ~ ( u , s ) d s _  (20) 

where f is a differentiable function null at the infinity such that the integral 
(20) exists. Then it is easy to check that if �9 is a solution of equation (1), 
�9 y is also a solution of equation (1). 

Let us consider, for instance, the Gabor (1946) transformation. Starting 
with the following Gaussian function shifted in direct and Fourier transform 
spaces: 

g(s, E; W) (277.O.2)1/4 exp 40-2 
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where o- and w are positive scalars, the Gabor transform ~g o f *  is defined 
by the relation 

.g(U,,;w)=fffg(s, ,;w).(u,s)ds (22) 

In (22), it is assumed that every component of * is an arbitrary, complex- 
valued, square-integrable function (with respect to the variable s). The 
inverse transform is (Gabor, 1946; Helstrom, 1966) 

�9 (u,s)=I I.+~176 (23) 

and one has 

;f2 ;2 [*gl 2 dC dw = 1.12 as (24) 

4 2 This last relation proceeds from the definition of I . I  2 as 2~=11~ol and from 
the fact that (24) holds for every component ~ (Helstrom, 1966). 

We now define the spinor fields [I(u, ~:; w) through the relation 

f~(u, r w) = e-iew/2*g(U, ~; w) (25) 

According to (20)-(22), f~(u, so; w) is a solution of the Dirac equation (1). 
Substituting into (22) the solutions *.,re(u, s) given by (5) and (7) leads to 
a second kind of focus wave mode solution f~n,,.(u, r w). We have not 
proved that with 12.,~ the conditions 1 and 2 of the last section on the 
dynamical invariants are still satisfied, but the relation (24) makes this result 
plausible. 

3. SPLASH WAVE MODE SOLUTIONS 

It it not a drawback per se that the solutions *~,m and ~n,m have infinite 
energy. Plane wave solutions also share^this property. But it is interesting 
(Ziolkowski, 1985) to look for solutions q~n,m and f~ . . . .  which we call splash 
wave modes (Ziolkowski, 1985), such as the quantities P~,m and S~.m are 

^ ^ 

finite. We define * .... and f~n,m as weighted superposition of *n,m and 
f~ . . . .  respectively. 

Denoting qb~(k), Xm(q) the solutions (7), we get 

where F1 and F2 are suitable weight functions. 
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Let us introduce the Laplace-like transforms 

fo o fo G,(p~) = F~(k) e -gp~ dk, G2(Pb) : 

with 

F2(q) e -qpb dq (27) 

p~ = i(+ r2/(a - i(), Pb = -- i(+ r2/(b + i~) 

QI,Sl 

are bounded for 

(27') 

Then the solutions ~ ,  .~,. take the form 

r" e - ' ~  ( e - ~ / ( a - i , ) )  
(~n (a  -- i~:)n+l G~(p~) r -t" 

(28) 
^ r " e  ''~ ( i ) 

X~ (b+i~),.+~ G2(pb) _re,~/(b+isc ) 

Using in the expressions (16) and (18) ~ and X,~ instead of qb and 
"0 X~ gives the components T~m of the energy-momentrum tensor and the 

components ~o.~ of the spin tensor. In Appendix B, we prove that /5~,.m 
and S~,. are finite provided that the integrals 

Io io o = dk IF~(k)[2 Q2,~ = dq ]F2(q)l-------~2 (29) 
k', ' q~ 

s , = n - ~ ,  n - i ,  n, n+�89 n + l  

s 2 = m  - 3 ,  m - l ,  m - i ,  m, m+~, m + l  

These rather mild conditions are easy to satisfy, for instance, with 
weight functions such as kte  -k~ and klJ~(kfl), where ~ is positive and J~ 
denotes the usual Bessel function. A qualitative discussion of dPn can be 
found in Hillion (1987) for this last weight function. 

One should have similar results for ~n,~, but we have not made 
explicit computations. Let us remark that one could also define another 
kind of solution lln.m by weighting the parameter w: 

a.,,.(u, ~; v) = F(vw)a.,m(u, ~; w) dw (30) 

We have not checked these solutions. 

4. P A R A X I A L  A P P R O X I M A T I O N  O F  T H E  D I R A C  E Q U A T I O N  

Using the variables ~ and ~ we find that the wave equation D~b = 0 
becomes 

A• tp=0 (31) 
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where A, is the transverse Laplacian. The paraxial approximation of (31) is 

since, for the solutions q~(x• z) e ikg, (32) leads to the parabolic equation 

( A l + 2 i k O )  ~ = 0  (32') 

satisfied by the paraxial approximation of the scalar fields. A look at (31) 
and (32) shows that if ~(xa, ~, 0 is a solution of (31), then q~--- qJ(x~, 2z, 4) 
is a solution of (32). In particular, the focus wave solutions qJ~ of Eq. (31) 
lead to the solutions ~, used to discuss the propagation of Gaussian light 
beams. 

With the variables ~ and ~ the Dirac equation (1) becomes 

(0= + 2F~0~ + 2r~o~)~ = 0 (33) 

0• is the transverse part of the operator 0 and one has 

r e = ~(r~-  r~ r~=~(r~ + r  ~ (33') 

These matrices satisfy the relations 

(r~) ~ = (r~) 2 = o, r~r~+ F~F ~ = �89 (34) 

Substituting in (32) 0~ by 20~ gives the paraxial approximation of the Dirac 
equation: 

(0~ + F %  + 2r eo~)r = 0 (35) 

since it is easy to check that each solution of (35) is also a solution of (32). 
So the solutions ~(xz ,  ~:, ~) of (33) supply the solutions ~(xa ,  2z, ~) 

of (35) and in particular the paraxiat spinor fields ~,m, ~, , , ,  ~,m h,m, 
obtained from the focus wave modes and from the splash wave modes. 
Note that the paraxial waves have no longitudinal structure,' so that the 
problem of the infinities disappears. 

Using cylindrical coordinates together with the representation (2), (2') 
of the Dirac matrices, we find that equation (35) becomes 

20~,  + e'~(0~-~ 0~,) ~2 = 0 

(36) 

e '~ O r 31- Oq~ ~ 1  - -  Oz~2  ~- 0 

with a similar system for the spinor .~. 
This equation is reminiscent of the equation for the TE, TM electromag- 

netic modes in a cylindrical waveguide (Hillion and Quinnez, 1986a,b). It 
could also supply the basis for a geometrical optics approximation of the 
neutrino field. 
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Remark I. Using ~ instead of ~ in the expressions (8'), (9) leads to the 
paraxial approximation of the electromagnetic field. In particular, for n = 0, 
this gives the Gaussian solutions previously discussed by some authors (Lax 
et al., 1975; Davis, 1979) with a minor difference. Here we get a circularly 
polarized field, while they obtained a linearly polarized one. 

Remark 2. There exists between the solutions ~ of equation (32') and 
the solutions of the Laplace equation (A j_ + 02) ~2 = 0 the very simply integral 
relation 

(Tffz) 1/------'~ L \ 2z / J  @L(xj., s) ds (37) 

provided that oz@L = 0 at z = 0. This result can be obtained by a direct 
calculation or by taking the Laplace transform (with respect to z) of  both 
partial differential equations. In this case one has to use the relation between 
f (p)  and f(x/-p), where p denotes the symbolic variable (Van der Pol and 
Bremmer, 1959). 

For instance, with ~L = Im(kor) e im~ cos koz we get 

, .  , [ . k o ]  
S-~ lm(kor) expum~, expt,--~ 2 ) 

x + ed-ko" 1 ,  ,, 
where Im is the usual modified Bessel function, and erfc is the 
complementary error function. 

5. DISCUSSION 

The Dirac equation for massless fields in unbounded isotropic media 
is very rich in solutions. The solutions that we obtained here correspond 
to waves with transverse and longitudinal structures propagating along Oz. 
The question is whether these solutions are supported by some physical 
process. One can imagine them as excitations of the vacuum or of  a 
hypothetical ether (Dirac, 1951). In particular, the self-conjugate solutions 
could give birth to excitations undetectable by ordinary means. If  these 
solutions have a physical existence we would still have to find the meaning 
of the various parameters characterizing the solutions. 

APPENDIX A 

We prove here the result given in Sections 2 and 3 about P'n,m and 
S~,m. Of course one only has to make computations with the half-spinor 
�9 , ,  since Xm gives similar results. 
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Let ~ be a posi t ive  integer and a be a posit ive  scalar; one has 

1 .3 .5  o , - 1 ~ ( ~ 3  '~ A. . . . . . .  ~.--~ - -  \ ~-'~ j for ~z = an 

fo ~ A~' (A1) 
xOe-'*X:dx-~ 1 r  ( /x+  1~ for /z = 2 n + l  

A ' = 2  \ 2 / 

F is the gamma function. 
Let n be a positive integer or half-integer; we write 

r" ( - k f L ] e x p [ - i ( k ~ - + n q Q ] ( r e - i ~ ' / ( a - i ( ) )  (A2) 
qb, (a - -  i f ) n + l  exp a -  i ( /  - i  

and we consider the following quantities, where vl and v2 are arbitrary 
scalars: 

r2n ( r 2 ) ( 2 a k r 2 ~  
l[I)2m; . . . .  2 (a2+~2)n+, vl+V2a--5~+~2 exp a-~+~-2] (A3) 

The integrals 

;7  fo ~ f7  ;o ~ 2 ~r de r dr @2 2 ~r de dr @ ~.v, ~2 - -  n "  ~ ' l 'V2  ~ _ ' , 

become, according to (A1) and (A3), for 2n = 2 s -  1, s a positive integer, 

2r dr r dr ( ~ 2  = 2~r d~ vl 
?1 ; 1~l, v 2 -o~ o _ (2a .+1 A2.+1+ 

- ) 
(2ak),+2 ~2n+2 

(A4) 

to (16)-(19), (19'), we get 

f~  ~o ~ P~ krr ~ d~ dr 2 ( ~ n + l ; 1 , 1 ~  

f7  ;o ~ P~ + P~ = 2k~r d.~ r dr 2 P~ I[I) n ; 1 , 1  ~ 

p~ 2 ~ f T ~ , ~ r  2 -~" (~') n ; n , n +  l 

(A6) 

;7  Io ~ 
z 2 S~ =1r d~ r dr ~ n;l _ 1 

2~r de dr @2 = 2~r de . ;  . . . . .  _ ( a 2 +  ~2) ~/2 

/P2  

The integrals (A4) and (AS) are not bounded. 
Let us call P~, and S~, the parts of the components of the energy- 

momentum four-vector and of the spin vector depending on qbn. According 
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P~ is the expression (A5) with ~:(a2§ -1/2 as integrand instead of 
(a2§ -1/2. So P~, =0. 

The other three quantities are not finite, according to (A4) and (A5). 
We still have to discuss 0 z P n -  Pn, which is a bit more intricate. We have 

L ,fo / fo +o~ 2 (" dE 
P ~  r d r  2 qb~+l;1,1-4~-a k r dr 2 -cr a 2 T ~  2 (I) n+l;l'l 

(A7) 

 ,fo +27ra _ a 2 §  ~2 rdr  (~n,n+l,n+2 

Since the first integral on the right-hand side is unbounded, o z P . -  P .  is not 
a finite quantity. 

APPENDIX B 

As in Appendix A, we only consider expressions depending on ~n- 
A generalization of (A1) is 

fo ~ r ~ [ ( k k' ) ]  A~ (a2+ ~2)(~+1)/2 exp --r2 a - - i ~  + a + i ~  dr -g(,~+l)/2(~; k, k') 
(B1) 

g(( ;  k, k') = a ( k  + k') + i~(k  - k ')  

and we have proved (Hillion, 1987) that for any integer or half-integer 
m > 1 one has 

f~o~ - 6(k - k') 
d~ 7r fro 

gm(~; k, k ')  ( 2 a k )  m-1 

~ 2 / ( m  - 1) m integer 
fm= [ 4 / ( m -  1) m half-integer 

where 8 ( k - k ' )  is the Dirac distribution. 
Writing p for pa, one has, according to (27), (27'), (28), 

^ r~e  -i"~ ( r e - i ~ / ( ~ - i : ~ ) ) G ( p )  

r " ( a - i~) "+1 

G ( p )  = I ~ F ( k )  e ikp dk, p = i~+ 
r 2 

d o  a - i~ 

and we consider the quantities 

r 2n { /-'2 r2 "~ 
ar .... (a2§ ~ k l e l §  Ka(p )  , Of = 1 , 2  

(B2) 

(B3) 

(B4) 
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with 

KI(p) = ]O(p)[ 2 (BS) 
K2(p)  = �89 G*(p )  G ' (p )  + G'*(p)  G(p)] 

G'(p)  denotes the derivative of G(p) .  
According to (16), (18), (B3), (19), (19') we get 

;7 ;; /3~, = 4~r s ~ d~: 2 dr 2~n+1;1.1 

f 7  , d ,  f cO ,2) 1/2 2(~0 n+ 1;1,1 =4rr _ (a2+~2)1/2 o dr (a2+ 2 

. fT~o ~ P . = 2 rr d~ dr e l (~  n;n,n+ l 

[+~ de i[ =2~r J-oo (a2+~2) 1/2 dr (a2+~ :2) 1~2;.,.+1 

(B6) 
AO A T ^ 2  

P .  + P .  = -2r  r dr 2r 

I 7  ~ Io ~ ~ 13~ =2rra _ (a2-k ~2) 1/2 rdr ,c~. , . . .+2 

fT( 3a2 ~ ffrar2@~ +27r _ 1 a2+~2j dr "2 

~7 fo ~ S~ ~r de ^ 2 = r dr 10.;1,-1 

Using the H61der inequality (Korevaar, 1968) 

[f fgdr <-suplfl f lgldr 
one has, using the fact that the integrals on r are positive, 

f7 f; 1/321-<4~ d r 1 6 2  1/2 dr 1(I) n+ I;1,1 

(BY) 
I~1_<~- d~: (a2 q- ~2) 1/2 dr  2 

--oO 0 

while, still using the H61der inequality, I/3~ is finite if the following 
integrals are bounded: 

f ~ f ;  f-?~,fo ~ r d r  ^ 2 2 l ~ n ; n + l , n + 2 ,  r d r 2 ~ . ; l . l  (B8) 
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To sum up, according to (B7) and (B8) and the expressions for pO + p,] 
and S~, all the quantities (B6) are finite if the integrals Jr,2 and J2,~ are 
bounded for the values of  the parameters a, ~, v~, and v2 given in Table I: 

(B9) 

;7 ;; J2,~ = d~ (a2-{--e2) 1/2 dr ~)2 

We start with J~,~ f o r / .  = n. According to (B3)-(B5) and interchanging the 
order of  the integrations, we get 

J . , , = f f ~ d k d k ' F * ( k ' ) F ( k ) e x p [ i ~ ' ( k ' - k ) ] _  

f+~ In ~ r2~ ( ,,2r2 \ • _ de d , (a2+  r  

+a + ie] 

where we 
integration on k' 

Io ~ J,,, : r dk IF(k)r \ ~ + ~ / 

--f f:: _ dkdk' F*(k')F(k) exp[i~(k'-k)] 

f - o o  { /ll/~2n+l /.,2/~ 2 n + 2 
X j_oo dsr .+1 , + .+-T------ ," \ g  (~;k, k)  g (e;k,k )] 

have used (B1). Taking (B2) into account, one finds after 

(810) 

T a b l e  1 

Q u a n t i t y  I n t e g r a l  /~ ,~1 /3 2 og s 

/5~, J2.2 n + 1 1 1 2 n - 1 / 2 ,  n + 1 / 2  

P~ J2.t n n n + l  1 n - 3 / 2 ,  n - 1 / 2  
fi~ + P~ J~,2 n 1 1 2 n - l ,  n 
/~On - - /~z  J i 3 ,  J l . 2  n,n  n + l , 1  n + l , 1  1 , 2  n - l , n , n + l  

.S~, J l , l  n 1 - 1  1 n, n + 1 

~ T h e  q u a n t i t i e s  P~,, S~ a r e  f in i t e  i f  t h e  i n t e g r a l s  Qs a r e  b o u n d e d  f o r  s = n - 3 / 2 ,  n - 1, n - 1 / 2 ,  
n, n + 1 / 2 ,  n + 1 , . . -  . I f  w e  h a d  u s e d  t h e  h a l f - s p i n o r  X. , ,  w e  w o u l d  h a v e  o b t a i n e d  t h e  s a m e  

r e s u l t s  w i t h  m i n s t e a d  o f  n. 
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Jl,1 is b o u n d e d  if  the integrals 

dk 2 
Q , = [  --~lF(k)l ( B l l )  

J0 

are b o u n d e d  for s = n, n + 1. 
One  has a similar c o m p u t a t i o n  for J12 with kll=(k)l = instead o f  [F(k)l 2, 

so that the integrals Qs have  to be b o u n d e d  for s = n - 1, n. Us ing  (B1),  one  
checks  easi ly  that Jz~ and J22 are deduced  from JH and J12, respectively,  
by changing  n into n - 1/2.  In Table  I, we  give the values  o f  s for wh ich  
the integrals Qs must  be b o u n d e d  to m a k e  the quantit ies  (B6) finite. 
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